Polyethylene glycol and a novel developed polyethylene glycol-nitric oxide normalize arteriolar response and oxidative stress in ischemia-reperfusion.
نویسندگان
چکیده
Polyethylene glycol (PEG) has been shown to repair cell membranes and, thus, inhibit free radical production in in vitro and in vivo models. We hypothesized that PEG and newly developed organic nitrate forms of PEG (PEG-NO) could repair endothelial dysfunction in ischemia-reperfusion (I/R) injury in the hamster cheek pouch visualized by intravital fluorescent microscopy. After treatments, we evaluated diameter and RBC velocity and flow in arterioles, as well as lipid peroxides in the systemic blood, perfused capillary length, vascular permeability, leukocyte adhesion, and amount of von Willebrand factor (vWF) in the blood after I/R injury. A control group was treated with 5,000- or 10,000-Da PEG, and three groups were treated with PG1 (1 NO molecule covalently bound to PEG, 5,170 Da), PG8 (8 NO molecules covalently bound to PEG, 11,860 Da), and PG16 (16 NO molecules covalently bound to PEG, 14,060 Da). All animals received 0.5 mg/0.5 ml. Lipid peroxides increased at 5 and 15 min of reperfusion, whereas diameter, RBC velocity, and blood flow decreased in arterioles after I/R injury. Vascular permeability, leukocyte adhesion, and vWF increased significantly. PEG and PG1 attenuated lipid peroxides and vasoconstriction during reperfusion and decreased leukocyte adhesion and vascular permeability. PG8 maintained lipid peroxides at normal levels, increased arteriolar diameter, flow, and perfused capillary length, and decreased vWF level and leukocyte adhesion (P < 0.05). PG16 was less effective than PG1 and PG8. In conclusion, PEG-NO shows promise as a compound that protects microvascular perfusion by normalizing the balance between NO level and excessive production of free radicals in endothelial cells during I/R injury.
منابع مشابه
Polyethylene glycol rinse solution: an effective way to prevent ischemia-reperfusion injury.
AIM To test whether a new rinse solution containing polyethylene glycol 35 (PEG-35) could prevent ischemia-reperfusion injury (IRI) in liver grafts. METHODS Sprague-Dawley rat livers were stored in University of Wisconsin preservation solution and then washed with different rinse solutions (Ringer's lactate solution and a new rinse solution enriched with PEG-35 at either 1 or 5 g/L) before ex...
متن کاملMorphological And Physiological Response of Two Accessions of Citrullus colocynthis to Drought Stress Induced by Polyethylene Glycol. Zahra Mohammadzade and Forouzandeh Soltani *
A biotic stresses can directly or indirectly affect the physiological status of an organism by altering its metabolism, growth, and development. In order to study the effect of drought stress on Citrullus colocynthis samples a factorial experiment was conducted in Horticultural science Department of University of Tehran in 2013. The first factor was two accessions of Citrullus colocynthis (Yazd...
متن کاملPolyethylene glycol superoxide dismutase and catalase attenuate increased blood-brain barrier permeability after ischemia in piglets.
BACKGROUND AND PURPOSE Transport of urea across the blood-brain barrier is increased during postischemic cerebral reperfusion in the piglet. Ischemia/reperfusion also has been observed to increase apparent superoxide anion generation on the surface of the brain. The present study was designed to address the hypothesis that the increased transfer of urea into the brain after ischemia/reperfusion...
متن کاملSurface Adsorption of Polyethylene Glycol and Polyvinyl Alcohol with Variable Molecular Weights on Zinc Oxide Nanoparticles
متن کامل
An S-nitrosylated hemoglobin derivative protects the rat hippocampus from ischemia-induced long-term potentiation impairment with a time window.
Evidence suggests that S-nitrosylation is a biological process involved in cerebral ischemia. The aim of the present study was to elucidate the effects of S-nitrosylated (SNO) polyethylene glycol-conjugated (PEG) hemoglobin (Hb) developed as an artificial oxygen carrier, which can absorb free NO and translocate NO to a sulfhydryl (SH) moiety, on ischemic cerebral dysfunction. Long-term potentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 291 4 شماره
صفحات -
تاریخ انتشار 2006